

Technische Universität Braunschweig

ffbf687cd85adf799b6acd81959 ffc14c88f8d898d79d8d6b666666 ffc86f4af88888

Data Mining for Computer Security 1

Konrad Rieck

Technische Universität Braunschweig, Germany

About me

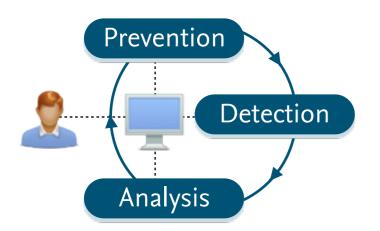
- Professor of Computer Science at TU Braunschweig
 - Fun with security and machine learning for 15 years
 - Head of Institute of System Security (~10 people)
- More on our website: http://www.tu-bs.de/sec

Computer Security Today

Classic security cycle

- Prevention, e.g. authentication
- Detection, e.g. virus scanners
- Analysis, e.g. digital forensics
- Security cycle out of balance
 - Increasing amount and diversity of attacks
 - Larger attack surfaces due to system complexity
 - Bottleneck: manual analysis of security data

Our Research



Automatisation of attacks Automatisation of defenses?

- Security systems with more "intelligence"
 - Application of data mining and machine learning
 - Assistance during prevention, detection and analysis
 - Human out of the loop but not without control

Some of Our Work

- **Prevention:** Discovery of vulnerabilities in software
 - Graph mining for finding vulnerable code patterns (S&P '14, '15)
 - Identification of missing security checks (CCS '13)
- Detection: Identification of attacks and malicious code
 - Detection of malicious Android applications (NDSS '14)
 - Detection of malicious Flash animations (DIMVA '16, Best Paper Award)
- Analysis: Understanding malicious code
 - Analysis of ultrasonic side channels in Android (Euro S&P '17)
 - Authorship attribution of native program code (?)

raunschweig

Some of Our Work

- **Prevention:** Discovery of vulnerabilities in software
 - Graph mining for finding vulnerable code patterns (S&P '14, '15)
 - Identification of missing security checks (CCS '13)
- **Detection:** Identification of attacks and malicious code
 - Detection of malicious Android applications (NDSS '14)
 - Detection of malicious Flash animations (DIMVA '16, Best Paper Award)
- Analysis: Understanding malicious code
 - Analysis of ultrasonic side channels in Android (Euro S&P '17)
 - Authorship attribution of native program code (?)

ML?

Some of Our Work

 Prevention: Discovery of vulnerabilities in software 	ML?
 Graph mining for finding vulnerable code patterns (S&P '14, '15) 	√
 Identification of missing security checks (CCS '13) 	√
 Detection: Identification of attacks and malicious code 	
 Detection of malicious Android applications (NDSS '14) 	√
 Detection of malicious Flash animations (DIMVA '16, Best Paper Award) 	√
 Analysis: Understanding malicious code 	
 Analysis of ultrasonic side channels in Android (Euro S&P '17) 	\checkmark
 Authorship attribution of native program code (?) 	\checkmark

Let's go ...

A generic view on learning

• How learning works in general (theoretically)

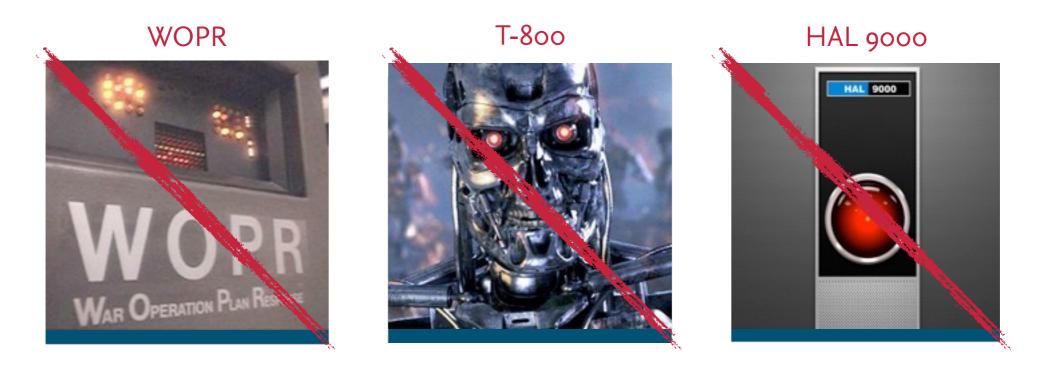
• Types of machine learning

- Different types of machine learning techniques
- Some learning algorithms
 - Implementations of machine learning
- A complete lecture condensed into two sessions. Good luck! 🥪

Machine Learning in a Nutshell

Machine Learning?

- **Machine learning** = branch of artificial intelligence
 - Computer science intersecting with statistics
 - No science fiction, please! We're talking about algorithms.



Machine Learning

- Theory and practice of making computers learn
 - Automatic inference of dependencies from data
 - Generalization of dependencies;
 ^t not simple memorization
 - Application of learned dependencies to unseen data
- Example: Handwriting recognition
 - Dependencies: written shapes ↔ concrete letters

Influences

• Where does machine learning come from?

- Interdisciplinary branch of computer science
- Close relation to artificial intelligence and data mining

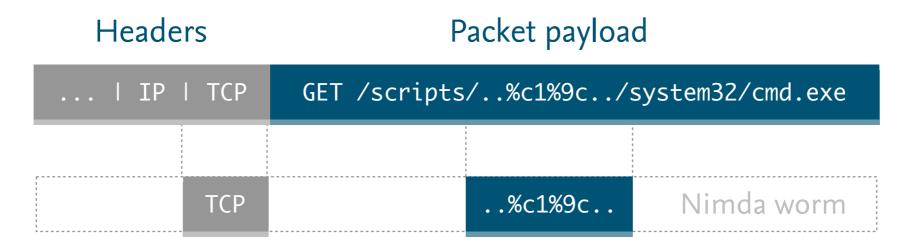
- Different inspirations for learning, e.g. neurology, physics, ...
- Large diversity of approaches, concepts and algorithms

Intrusion Detection

Network intrusion detection

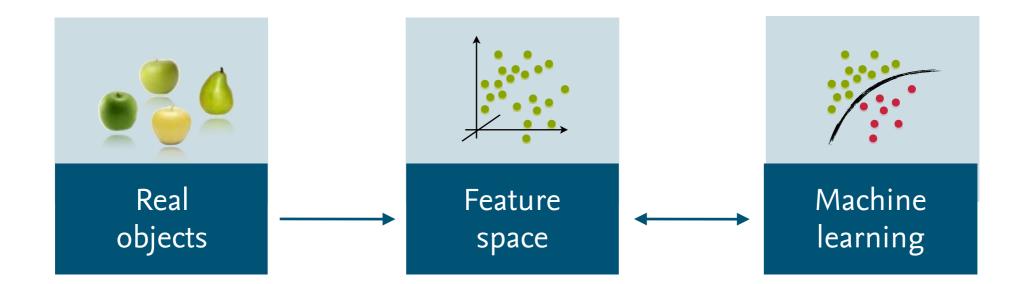
- Detection of attacks in network payloads
- Classic approach: signature-based detection
- Running example in this talk

Network packet and matching signature

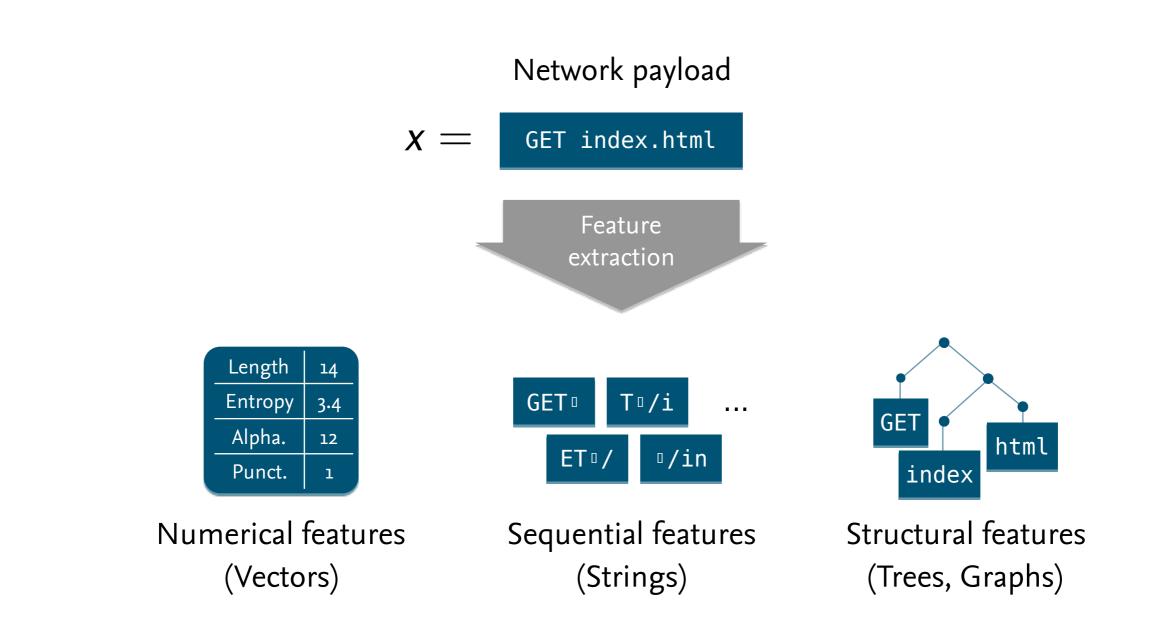


Feature Spaces

- Machine learning usually defined over vector spaces
 - Security data almost never in form of vectors
 - Key for learning in security \rightarrow a map to a feature space
- Representation of real objects using features



Feature Extraction



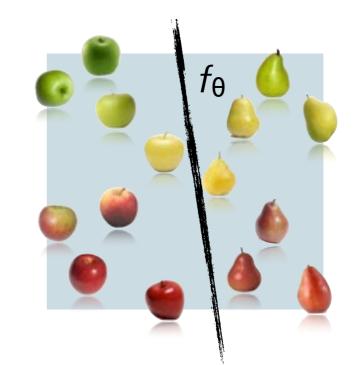
A Learning Model

• What can we learn?

- Inference of functional dependencies from data $(X \leftrightarrow Y)$
- Dependencies described by a learning model θ
- Model θ parameterizes a prediction function $f_{\theta} : X \rightarrow Y$

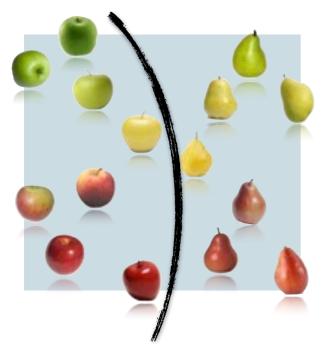
• A simple example

- X = color × height of fruits
- Y= {apple, pear}
- $\theta = (color, height)$ and bias



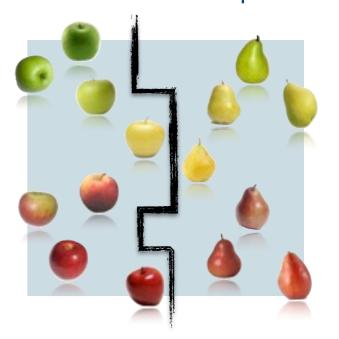
Examples: Learning Models

Quadratic functions



Other non-linear functions

Decision stumps



Technische Universität Braunschweig

Learning Function

Learning process

- Searching the space Θ for good models (functions f_{θ})
- **Supervised learning** (with labels)
 - Learning function $g: X \times Y \rightarrow \Theta$
 - "You know what you are looking for"
- Unsupervised learning (without labels)
 - Learning function $g: X \rightarrow \Theta$
 - "You don't know what you are looking for"

Learning and Errors

Learning process guided by errors

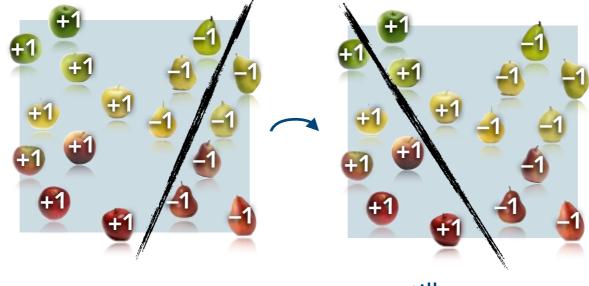
- Minimal error of learning model θ desirable
- Quantification of disagreement between predictions and truth
- Different strategies for reducing errors

3 errors

Learning and Errors

Learning process guided by errors

- Minimal error of learning model θ desirable
- Quantification of disagreement between predictions and truth
- Different strategies for reducing errors



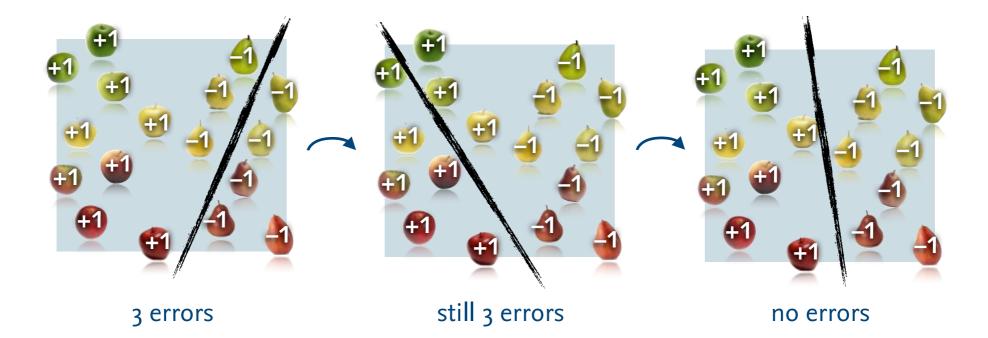
3 errors

still 3 errors

Learning and Errors

• Learning process guided by errors

- Minimal error of learning model θ desirable
- Quantification of disagreement between predictions and truth
- Different strategies for reducing errors



Test Data and Overfitting

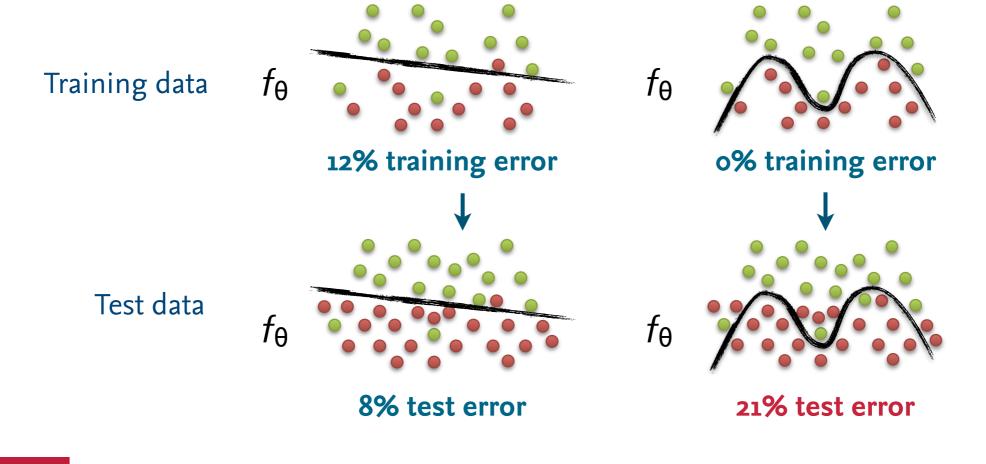
• Training and test data

- Model learned on training data; prediction on unseen test data
- Optimizing the error on training data dangerous

Test Data and Overfitting

• Training and test data

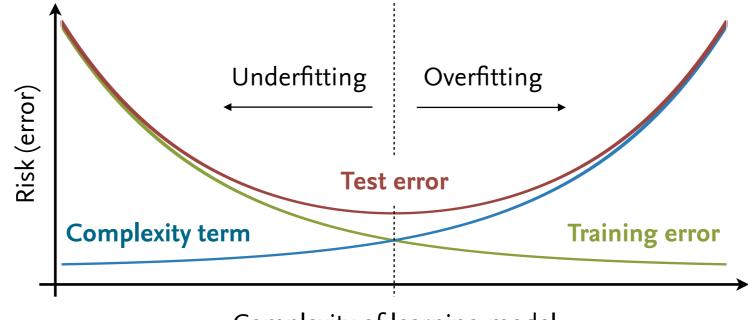
- Model learned on training data; prediction on unseen test data
- Optimizing the error on training data dangerous



Regularization

Regularization key to effective learning

- Danger of adapting learning model to training data only
- Balancing of training error and model complexity
- Examples: Costs of SVMs, pruning in decision trees, ...



Complexity of learning model

Types of Machine Learning

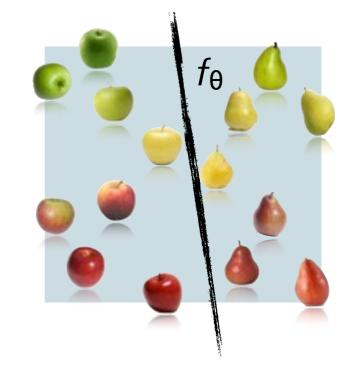
Supervised: Classification

• Learning to categorize objects into known classes

- Discrimination of objects using learning model
- Output domain often Y = {-1, +1} or {1,2,3...}

Examples

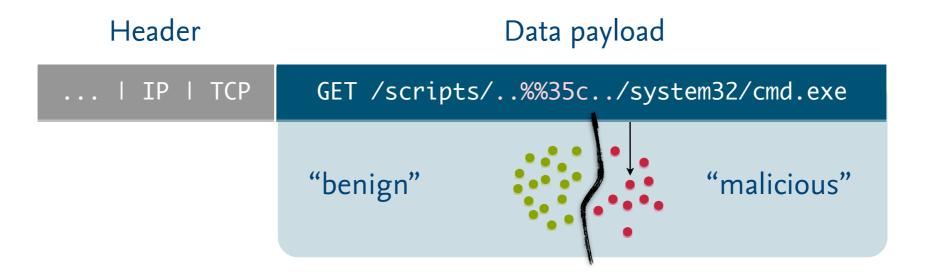
- Handwriting recognition
- Spam filtering in emails
- Common algorithms
 - SVM, KNN, Neural Networks, ...



Classification

Classification for intrusion detection

Discrimination between benign and malicious activity

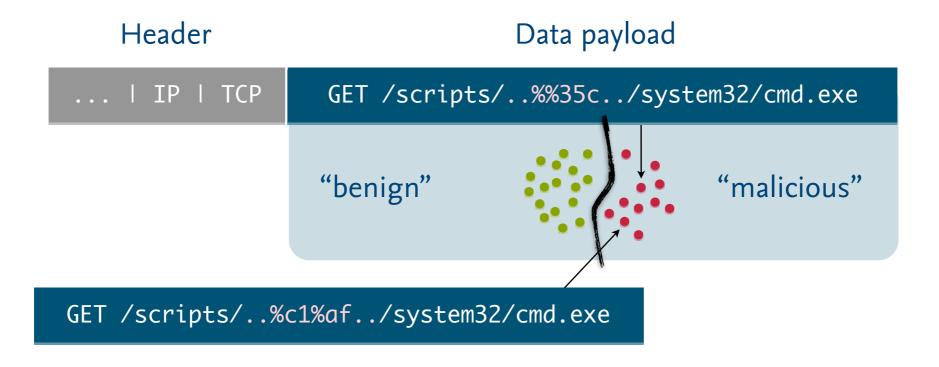


Page 22

Classification

Classification for intrusion detection

Discrimination between benign and malicious activity

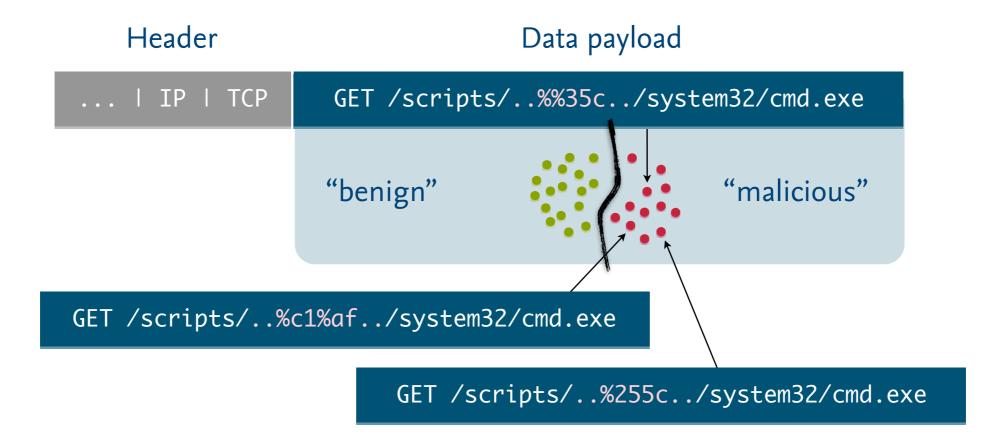


Page 22

Classification

Classification for intrusion detection

Discrimination between benign and malicious activity



Page 22

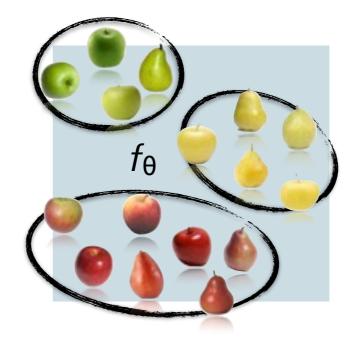
Unsupervised: Clustering

Grouping of similar objects into clusters

- Contrast to classification: clusters not known at start
- Output domain $Y = \{1, 2, 3, ...\}$ (~ permutations)

Examples

- Comparison of species
- Malware analysis
- Common learning algorithms
 - K-means, linkage clustering, ...



Running example

• Clustering of network payloads for later analysis

Unsupervised grouping of similar payloads into clusters

Header	Data payload
IP TCP	GET /scripts/%%35c/system32/cmd.exe

Running example

Clustering of network payloads for later analysis

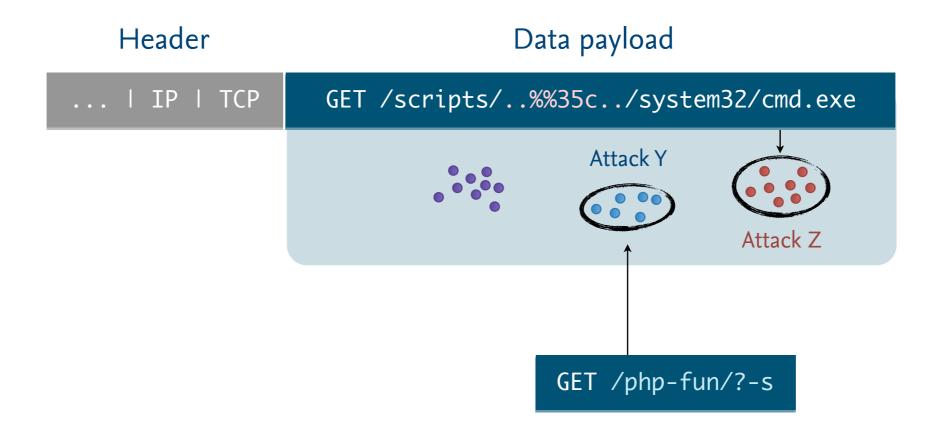
Unsupervised grouping of similar payloads into clusters

Header	Data payload
IP TCP	GET /scripts/%%35c/system32/cmd.exe
	Attack Z

Running example

Clustering of network payloads for later analysis

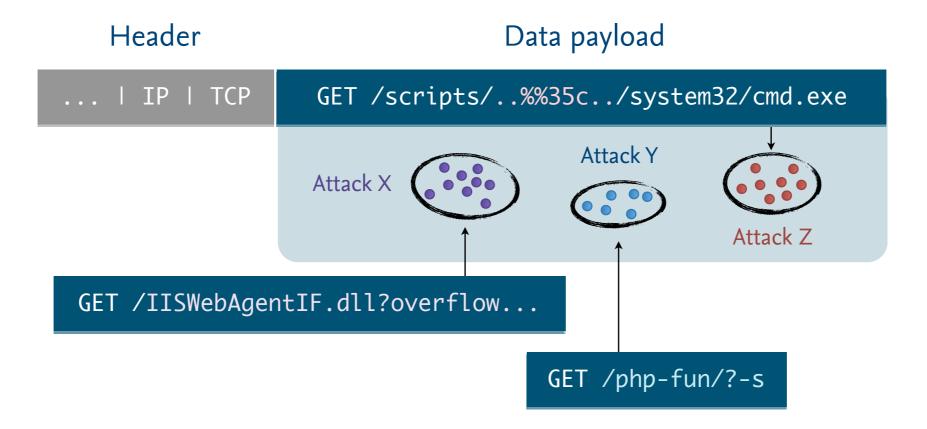
Unsupervised grouping of similar payloads into clusters



Running example

• Clustering of network payloads for later analysis

Unsupervised grouping of similar payloads into clusters



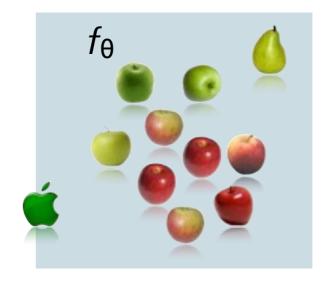
Unsupervised: Anomaly Detection

Detection of deviations from learned model of normality

- · Generative or discriminative models of normality
- Output domain often Y = [0,1] (anomaly score)

Examples

- Engine failure detection
- Intrusion detection
- Common approaches
 - Statistics, one-class SVM, ...



Anomaly Detection

• Anomaly detection for intrusion detection

Identification of attacks as deviations from normality

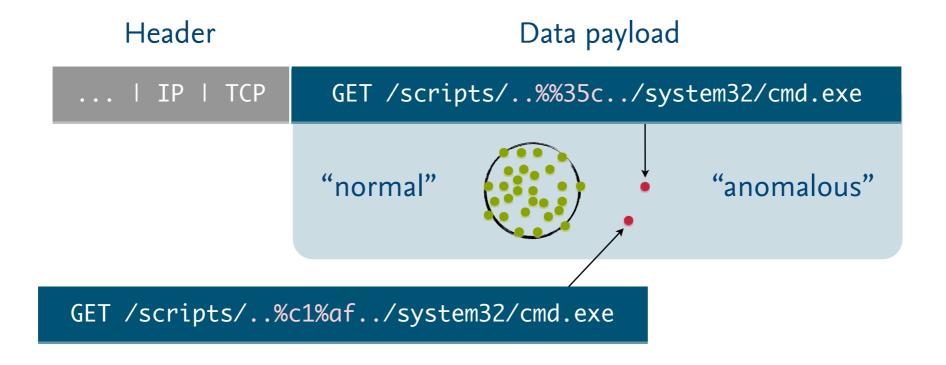
Header	Data payload
IP TCP	GET /scripts/%%35c/system32/cmd.exe
	"normal" • "anomalous"

Page 26

Anomaly Detection

• Anomaly detection for intrusion detection

Identification of attacks as deviations from normality



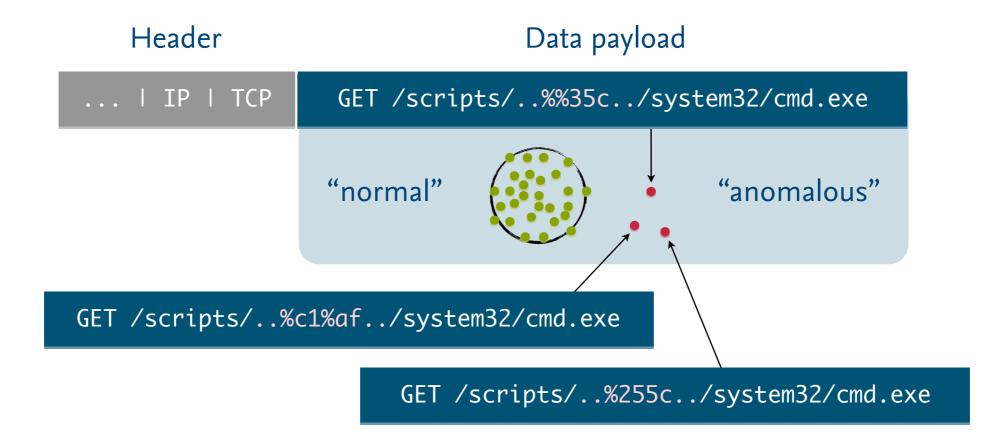
Page 26

Running example

Anomaly Detection

• Anomaly detection for intrusion detection

Identification of attacks as deviations from normality



Page 26

Running example

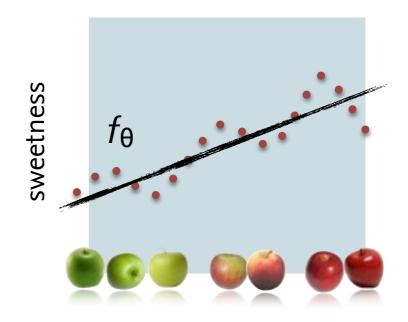
Supervised: Regression

• Learning to predict a numerical property (score)

- Approximation of observed function by learning model
- Output domain usually $Y = \mathbb{R}$

Examples

- Temperature forecasting
- Stock market prediction
- Common algorithms
 - Logistic & ridge regression, ...



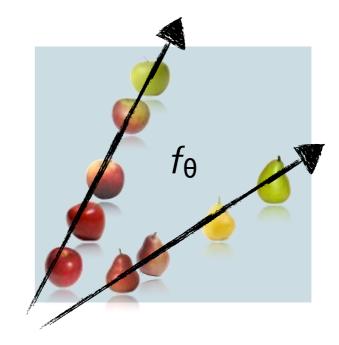
Dimension Reduction

Supervised or unsupervised reduction of dimensionality

- Extraction of more informative features for objects
- $X = \mathbb{R}^N$ and $Y = \mathbb{R}^M$ with $N \gg M$

Examples

- Visualisation and denoising
- Vulnerability discovery
- Common learning algorithms
 - PCA, LLE, NMF, ...

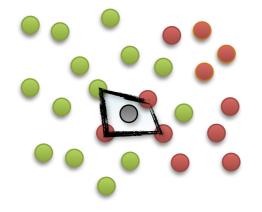


Some Learning Algorithms

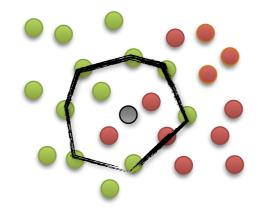
K-Nearest Neighbors

Learning using the local neighborhood of data

- Most intuitive and oldest learning algorithm
- Learning = not really ...training data is just stored
- Regularization = size of considered neighborhood
- Prediction = labels of neighborhood



Neighborhood k = 4



Neighborhood k = 11

K-Nearest Neighbors

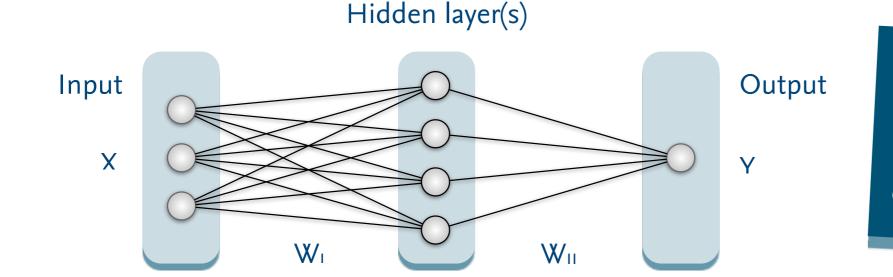
Learning using the local neighborhood of data

- Most intuitive and oldest learning algorithm
- Learning = not really ...training data is just stored
- Regularization = size of considered neighborhood
- Prediction = labels of neighborhood

Neural Networks

• Learning using a network of artificial neurons

- Classic method inspired by biological neural networks (~1940)
- Learning = adaption of weights of neural network
- Regularization = brain damage or weight decay
- Prediction = forward pass through neural network

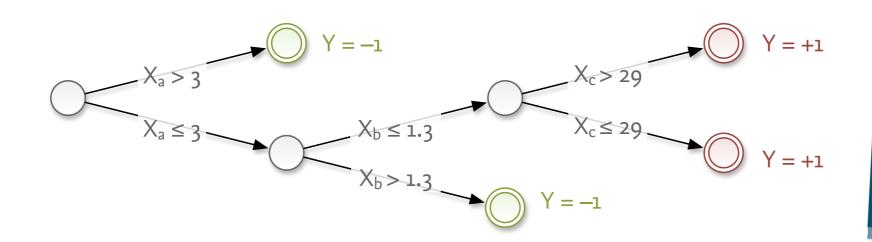


Deep Learning: Recent revival of neural networks with several different hidden layers

Decision Trees

• Learning by composition of simple logic predicates

- Classic method inspired by decision making (~1960)
- Learning = inductive composition of tree nodes
- Regularization = pruning of subtrees
- Prediction = top-down pass through tree



Random Forests: Ensemble of decision trees, each learned on randomly selected features

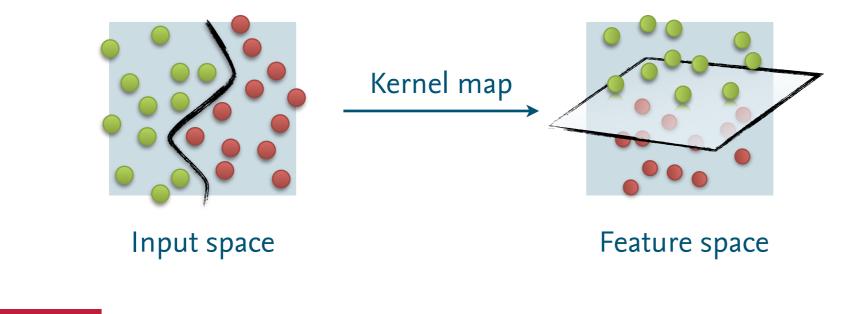
Page 32

Technische Universität Braunschweig

Support Vector Machines

• Learning using a hyperplane in a kernel feature space

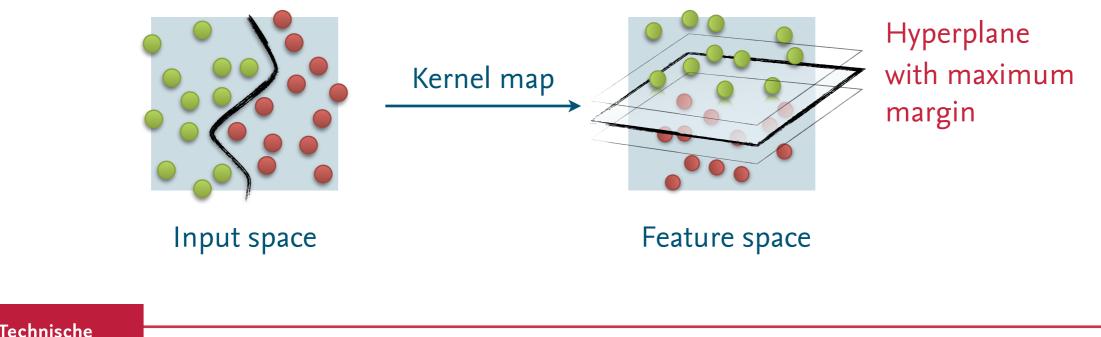
- Modern method inspired by learning theory (~1990)
- Learning = convex problem for determining hyperplane
- Regularization = softening of hyperplane for outliers
- Prediction = orientation to hyperplane



Support Vector Machines

• Learning using a hyperplane in a kernel feature space

- Modern method inspired by learning theory (~1990)
- Learning = convex problem for determining hyperplane
- Regularization = softening of hyperplane for outliers
- Prediction = orientation to hyperplane



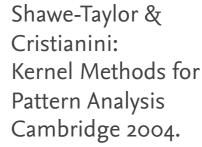
Several Other Methods

Several other learning methods

- Probabilistic models
- Boosting and bagging
- Genetic algorithms
- •••
- Several other learning concepts
 - Reinforcement learning
 - • •

Duda, Hart and Stork: Pattern Classification Wiley & Sons 2001

The Standard



Technische
 Universität
 Braunschweig

Summary

Summary

Current problems of computer security

- Increasing automatization of attacks and malware
- Large amounts of novel malicious code
- Defenses involving manual analysis often ineffective
- Machine learning in computer security
 - Adaptive defenses using learning algorithms
 - Automatic detection and analysis of threats
 - Assisted analysis of threats, e.g. vulnerabilities

raunschweig

Thank you! Questions?

