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About me

• Professor of Computer Science at TU Braunschweig 
• Fun with security and machine learning for 15 years 
• Head of Institute of System Security (~10 people) 

• More on our website: http://www.tu-bs.de/sec
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Computer Security Today

• Classic security cycle 
• Prevention, e.g. authentication 
• Detection, e.g. virus scanners 
• Analysis, e.g. digital forensics 

• Security cycle out of balance 
• Increasing amount and diversity of attacks 
• Larger attack surfaces due to system complexity 
• Bottleneck: manual analysis of security data
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Our Research

• Security systems with more “intelligence” 
• Application of data mining and machine learning 
• Assistance during prevention, detection and analysis 
• Human out of the loop — but not without control
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Some of Our Work

• Prevention: Discovery of vulnerabilities in software 
• Graph mining for finding vulnerable code patterns (S&P ’14, ’15) 

• Identification of missing security checks (CCS ’13)  

• Detection: Identification of attacks and malicious code 
• Detection of malicious Android applications (NDSS ’14) 
• Detection of malicious Flash animations (DIMVA ’16, Best Paper Award) 

• Analysis: Understanding malicious code 
• Analysis of ultrasonic side channels in Android (Euro S&P ’17) 

• Authorship attribution of native program code (?)
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Let’s go …

• A generic view on learning 
• How learning works in general (theoretically) 

• Types of machine learning 
• Different types of machine learning techniques 

• Some learning algorithms 
• Implementations of machine learning 

• A complete lecture condensed into two sessions. Good luck! !
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Machine Learning in a Nutshell
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Machine Learning?

• Machine learning = branch of artificial intelligence 
• Computer science intersecting with statistics 
• No science fiction, please! We’re talking about algorithms. 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Machine Learning

• Theory and practice of making computers learn 
• Automatic inference of dependencies from data 
• Generalization of dependencies; ↯ not simple memorization 
• Application of learned dependencies to unseen data 

• Example: Handwriting recognition 
• Dependencies: written shapes ↔ concrete letters 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Influences

• Where does machine learning come from?  
• Interdisciplinary branch of computer science 
• Close relation to artificial intelligence and data mining 
 
 
 
 

• Different inspirations for learning, e.g. neurology, physics, ... 
• Large diversity of approaches, concepts and algorithms
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Intrusion Detection

• Network intrusion detection 
• Detection of attacks in network payloads 
• Classic approach: signature-based detection 
• Running example in this talk 

• Network packet and matching signature  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Packet payloadHeaders

Nimda wormTCP ..%c1%9c..

GET /scripts/..%c1%9c../system32/cmd.exe... | IP | TCP   

Running example
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Feature Spaces

• Machine learning usually defined over vector spaces 
• Security data almost never in form of vectors 
• Key for learning in security → a map to a feature space 

• Representation of real objects using features  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Feature Extraction
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Numerical features 
(Vectors)

Length 14
Entropy 3.4
Alpha. 12
Punct. 1

Sequential features 
(Strings)

...GET▯

ET▯/

T▯/i

▯/in

Structural features 
(Trees, Graphs)

GET

index
html

Running example

GET index.html

Network payload

Feature  
extraction

x =
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A Learning Model

• What can we learn? 
• Inference of functional dependencies from data (X ↔ Y) 
• Dependencies described by a learning model θ  
• Model θ parameterizes a prediction function fθ : X → Y 

• A simple example 
• X = color × height of fruits 
• Y= {apple, pear} 
• θ = (color, height) and bias
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Examples: Learning Models
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Quadratic functions
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Learning Function

• Learning process 
• Searching the space Θ for good models (functions fθ) 

• Supervised learning (with labels) 
• Learning function g : X × Y  →  Θ 
• “You know what you are looking for” 

• Unsupervised learning (without labels) 
• Learning function g : X  →  Θ 
• “You don’t know what you are looking for”
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Learning and Errors

• Learning process guided by errors 
• Minimal error of learning model θ desirable 
• Quantification of disagreement between predictions and truth 
• Different strategies for reducing errors  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Test Data and Overfitting

• Training and test data 
• Model learned on training data; prediction on unseen test data 
• Optimizing the error on training data dangerous 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Regularization

• Regularization key to effective learning  
• Danger of adapting learning model to training data only  
• Balancing of training error and model complexity 
• Examples: Costs of SVMs, pruning in decision trees, ... 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Types of Machine Learning 
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Supervised: Classification

• Learning to categorize objects into known classes 
• Discrimination of objects using learning model 
• Output domain often Y = {–1, +1} or {1,2,3...} 

• Examples 
• Handwriting recognition 
• Spam filtering in emails 

• Common algorithms 
• SVM, KNN, Neural Networks, ...
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Classification

• Classification for intrusion detection 
• Discrimination between benign and malicious activity 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“benign” “malicious”

GET /scripts/..%%35c../system32/cmd.exe

Data payloadHeader
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“benign” “malicious”

GET /scripts/..%%35c../system32/cmd.exe

Data payloadHeader

GET /scripts/..%c1%af../system32/cmd.exe
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Unsupervised: Clustering

• Grouping of similar objects into clusters 
• Contrast to classification: clusters not known at start 
• Output domain Y = {1,2,3,...}  (~ permutations) 

• Examples 
• Comparison of species 
• Malware analysis 

• Common learning algorithms 
• K-means, linkage clustering, ...
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Clustering

• Clustering of network payloads for later analysis 
• Unsupervised grouping of similar payloads into clusters 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Data payloadHeader

... | IP | TCP   

Running example

GET /scripts/..%%35c../system32/cmd.exe
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GET /scripts/..%%35c../system32/cmd.exe
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Data payloadHeader

... | IP | TCP   

Running example

GET /scripts/..%%35c../system32/cmd.exe

GET /php-fun/?-s

Attack Y

Attack Z
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Data payloadHeader

... | IP | TCP   

Running example

GET /scripts/..%%35c../system32/cmd.exe

GET /IISWebAgentIF.dll?overflow...

Attack X

GET /php-fun/?-s

Attack Y

Attack Z
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Unsupervised: Anomaly Detection

• Detection of deviations from learned model of normality 
• Generative or discriminative models of normality 
• Output domain often Y = [0,1]  (anomaly score) 

• Examples 
• Engine failure detection  
• Intrusion detection 

• Common approaches 
• Statistics, one-class SVM, ...
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Anomaly Detection

• Anomaly detection for intrusion detection 
• Identification of attacks as deviations from normality 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GET /scripts/..%%35c../system32/cmd.exe

Data payloadHeader

... | IP | TCP   

Running example
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Supervised: Regression

• Learning to predict a numerical property (score) 
• Approximation of observed function by learning model  
• Output domain usually Y = ℝ 

• Examples 
• Temperature forecasting 
• Stock market prediction 

• Common algorithms 
• Logistic & ridge regression, ...
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Dimension Reduction

• Supervised or unsupervised reduction of dimensionality 
• Extraction of more informative features for objects 
• X = ℝN and Y = ℝM with N ≫ M 

• Examples 
• Visualisation and denoising 
• Vulnerability discovery 

• Common learning algorithms 
• PCA, LLE, NMF, ... 
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Some Learning Algorithms
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K-Nearest Neighbors

• Learning using the local neighborhood of data 
• Most intuitive and oldest learning algorithm  
• Learning = not really ...training data is just stored 
• Regularization = size of considered neighborhood 
• Prediction = labels of neighborhood 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Neural Networks

• Learning using a network of artificial neurons 
• Classic method inspired by biological neural networks (~1940) 
• Learning = adaption of weights of neural network 
• Regularization = brain damage or weight decay 
• Prediction = forward pass through neural network 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Deep Learning:  
Recent revival of neural 
networks with several 
different hidden layers
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Decision Trees

• Learning by composition of simple logic predicates 
• Classic method inspired by decision making (~1960) 
• Learning = inductive composition of tree nodes 
• Regularization = pruning of subtrees 
• Prediction = top-down pass through tree 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Y = +1
Y = –1

Random Forests:  
Ensemble of decision trees, 
each learned on randomly 
selected features
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Support Vector Machines

• Learning using a hyperplane in a kernel feature space 
• Modern method inspired by learning theory (~1990) 
• Learning = convex problem for determining hyperplane 
• Regularization = softening of hyperplane for outliers 
• Prediction = orientation to hyperplane 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Several Other Methods

• Several other learning methods 
• Probabilistic models 
• Boosting and bagging  
• Genetic algorithms 
• ... 

• Several other learning concepts 
• Reinforcement learning 
• ...
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Shawe-Taylor &  
Cristianini: 
Kernel Methods for  
Pattern Analysis 
Cambridge 2004. 

Kernel Methods

Duda, Hart  
and Stork: 
Pattern  
Classification  
Wiley & Sons 2001 

The Standard
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Summary
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Summary

• Current problems of computer security 
• Increasing automatization of attacks and malware 
• Large amounts of novel malicious code 
• Defenses involving manual analysis often ineffective 

• Machine learning in computer security 
• Adaptive defenses using learning algorithms 
• Automatic detection and analysis of threats 
• Assisted analysis of threats, e.g. vulnerabilities
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Thank you! Questions?
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